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A two-layer planetary geostrophic model is adopted to study the breaking of planetary 
waves in the presence of Ekman pumping and the associated mean flow. The governing 
equation for the interface is a quasi-linear equation, which is solved analytically by the 
method of characteristics. The waves are forced by annual or interannual upwelling or 
downwelling along the eastern boundary of a subtropical gyre. It is found that the time 
and position at which breaking occurs is mainly determined by the speed and depth of 
the eastern boundary perturbation, while the intensity of a breaking front is mainly 
determined by the amplitude of the perturbation. The breaking of a planetary wave is 
affected significantly by Ekman pumping and the associated mean flow, particularly for 
annual and interannual forcing. Downward Ekman pumping, as in a subtropical gyre, 
suppresses breaking in downwelling waves caused by eastern boundary downwelling, 
but enhances breaking in upwelling waves caused by eastern boundary upwelling. In 
the presence of steady downward Ekman pumping, downwelling breaking will not 
occur except for interfaces near the surface. The structure and intensity of a breaking 
front is also discussed. 

1. Introduction 
Observations have shown the existence of basin-scale fronts : the Subarctic Front 

and Subtropical Front in the North Pacific are two examples (Roden 1976, 1980; 
Levine 8: White 1981). There is also evidence of large-scale frontal structures and 
baroclinic jets in the North Atlantic (McWilliams et al. 1983 ; Hua, McWilliams & 
Owens 1986). Vertically, some of the large-scale fronts can extend through the main 
thermocline. Some theories have been proposed to explain these basin-scale fronts 
(Roden 1976, 1980; Cushman-Roisin 1984; Dewar 1991). 

Although these fronts seem to possess clear time-mean frontal structures, more 
detailed observations indicate that each has strong temporal variability and finer 
frontal structures (Niiler & Reynolds 1984). To date, the physical mechanisms for this 
finer structure and temporal variability are not well understood. Here, it is suggested 
that the breaking of planetary waves is one important mechanism, because breaking 
can create large-scale density frontal structures and thermal wind jets in the ocean. 
Here, we will explore the wave breaking with the emphasis on the effect of Ekman 
pumping and the associated mean flows. 

Planetary wave breaking was first studied by Anderson & Killworth (1979). Using 
a 1; layer model, they demonstrated that for annual upwelling and downwelling at the 
eastern boundary, a planetary wave breaks soon after it leaves the eastern boundary. 
Dewar (1987) studied the breaking of free planetary waves in a two-layer model. In 
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these two works, the thermocline structure and circulation are simple: Anderson & 
Killworth have one-dimensional thermocline structure, and Dewar’s analysis, there are 
no mean Ekman pumping and flows. Here, we will study further the breaking of 
planetary waves in the presence of Ekman pumping and its associated two-dimensional 
mean flow. The main difficulty lies in both the mean flow field and the two-dimensional 
structure. There is no general theory dealing with temporal two-dimensional fronts. 
For simplicity, we only consider the breaking of waves forced by upwelling and 
downwelling at the eastern boundary which may be caused by either an alongshore 
wind variation or a coastal Kelvin wave coming from the equator. We hope that the 
results may shed light on the more general case of the breaking of planetary waves 
forced by other mechanisms such as a local wind or buoyancy flux anomalies in other 
parts of the ocean. 

We will study the breaking of two types of disturbances: a downwelling wave which 
is caused by lowering the interface at the eastern boundary, and an upwelling wave 
which is forced by lifting the interface. Since deepening the interface at the eastern 
boundary causes the interface to shoal towards the west, producing a northward 
thermal wind, it is intuitively expected that the breaking of a deepening wave front will 
be accompanied by a northward thermal wind jet. Similarly, a shallowing breaking 
front is accompanied by a southward thermal wind jet. 

The work is arranged as follows. A two-layer planetary geostrophic model is 
developed in $2. The interface is governed by a quasi-linear equation and is solved 
analytically by the method of characteristics. In 93, we review and further explore the 
breaking of a free wave, which is generated in the absence of mean Ekman pumping. 
From analytical solutions, it is possible to calculate the time and position where 
breaking first occurs. In addition, the discussion of the breaking of the free wave will 
help us to understand the cases with Ekman pumping and the associated mean 
circulation presented in $4, which represents the core material of the paper. It will be 
found that the breaking time, position and the intensity of the breaking front will be 
changed substantially by the Ekman pumping and mean flow. 

2. The model and solution 
2.1. The model 

The model is a two-layer, planetary geostrophic one with a rigid flat bottom, and 
schematic view of the three-dimensional geometry is depicted in figure 1. The densities 
of the upper and lower layers are represented by p1 and pz respectively. The thickness 
of the upper layer is h while the total depth is H. Ekman pumping w, is imposed at the 
surface. The northern and southern boundaries of the subtropical gyre, defined to be 
where Ekman pumping vanishes, are located at the latitudes with the Coriolis 
parameters f, and f,, respectively. The eastern and western boundaries are set at 
rc, = 0 and x, < 0. A rigid and flat bottom H = constant is used, though we should 
point out, in connection with application to the real ocean, that we imagine, the bottom 
of the model ocean to be the bottom of the main thermocline, or the depth to which 
the wind-driven gyre penetrates. This imaginary bottom is neither rigid nor flat in the 
real ocean. 

For a gyre-scale circulation, the hydrostatic balance yields the dynamic pressures in 
both layers as 

(2.1 a) 
Here, po is the mean density and y = g(pz-pp,)/po is the reduced gravity; 7 is the 
elevation equivalent to an upper-layer pressure such that y7 = po(psurface +goD, where 

P1 = Po 77, Pz = Po Y(7 - h). 
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FIGURE 1. A three-dimensional view of the geometry of the model. 

5 is the surface elevation. Implicitly, it has been assumed that (p2-p,)/po 6 1.  Using 
the planetary geostrophic approximation, the momentum equations are simply the 
geostrophic balance in each layer : 

on = ~ n . z / ~ o f ,  uzz = -Pn,/Pof, n = 132, (2.1 b) 

where n = 1 refers to the upper layer and n = 2 to the lower layer. In addition, we have 
the Sverdrup relation and the conservation of the lower-layer potential vorticity 
q = f / ( H -  h)  respectively : 

P[v, h +v,(H-h)l =fwe, (2.1 c) 
(a ,+u, .V)q = 0. (2.1 d )  

Using (2.1 a, b), the Sverdrup relation (2.1 c) can be integrated explicitly to give 

2Hq+(H-l1)~  = D2+2Hq,+(H-he)2, ( 2 . 2 ~ )  

D2 = - we(x7.6 t)dx; qe( f ,  t )  = 7 15=0, t )  = h lz=o. (2.2b) 

Here, ye and -he are respectively the upper-layer pressure and interface depth at the 
"s: PY 

where 

eastern boundary. Therefore, we can derive the lower-layer pressure in (2.1 a) as 

Substituting (2.3) into (2.1 b) yields the velocity in layer 2 (u2, u2). Then, substituting the 
velocity into (2.1 d), we obtain the equation for the interface as 

h, + ~g h, + [uB + C(h)] h, = - ( 1  - h / H )  we, (2 .4~)  

where a flat bottom H = constant has been used and the y-coordinate is changed to the 
Coriolis parameterfby using df= pdy. In addition, uB, vB( = df/dt) and C(h) are the 
barotropic velocities and the phase speed of the non-dispersive Rossby wave, 
respectively, 
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Here uBE is the barotropic velocity at the eastern boundary, which hereafter will be 
assumed zero, i.e. 

(2 .4~)  

Since the barotropic flow in ( 2 . 4 ~ )  is completely determined by the Sverdrup relation 
as shown in (2.4b), the evolution equation ( 2 . 4 ~ ~ )  is quasi-linear. The characteristics are 
simply the ray paths of baroclinic planetary waves in the presence of a barotropic flow. 
This equation has previously been derived by Rhines (1986) and Dewar (1987). 

We non-dimensionalize the evolution equation (2.4 a). Denoting a dimensional 
quantity by a superscript asterisk, we have the non-dimensional quantities 

f = f */",, /? = / * / P o ,  t = t*/T,, x = x*/L,  h = h*/H, w = w*/ W. (2.5) 

In (2.5), W, f,, Po, H represent respectively the typical Ekman pumping velocity, the 
Coriolis parameter at the northern boundary of the subtropical gyre, the mean /3-value 
in a subtropical gyre and the total depth. In addition, T, = H / W ,  y = 2 cm s-', 
L = CbH T,, and CbH = Po L;, L; = y H / f  with L, and C,, being the deformation 
radius and the typical mid-latitude Rossby wave speed. T, is then the advective 
timescale for a particle to sink to the bottom of the main thermocline and L is the zonal 
scale across which a mid-latitude planetary wave travels in one advective timescale. If 
we choose the parameters as W = lopJ cm/s,f7d = 2 0  sin (45') = s-l, H = 600 m, 
Po = (252/a)cos(35') = 1.87 x s-l cm-l, it follows that T, x 20 years, 
L x 8400 km, CbH % 1.6 cm s-l, L, % 33 km. With (2 .4~)  and (2.5), the baroclinic 
evolution equations (2.4~1, b) become 

h, + uB*Vh + C(h) h, = - (1 - h)  w,, ( 2 . 6 ~ )  

, 0' = 2f w, dx (2.6b) u B (  = 3 = fw,, C(h) = -___ 
h(l -h)  a D~ 

2f ' f 2  
where uB = -f 

For simplicity, in (2.6) we have chosen an exact /-plane such that f = f,+P0y, where 
f,, is the mean latitude of a subtropical gyre. (This differs from the standard P-plane 
in that the f = f ,  +Boy  always holds whether f is differentiated or not !) 

2.2. The solution 
The characteristic equations for ( 2 . 6 ~ )  are 

dh 
ds ds ds = - (1 - h)  W , ( X , f ,  0, df = 1, - = u Z i g =  fw,, - dt - 

dx h(1 -h)  h(l -h) - = UB(X,J; t ) - 7  = - 
ds f 2 .  

The initial conditions for characteristics are 

(t,L h, 4 I,=o = (tl,f,, hi, Xi). 

Division of (2.7b) and (2.7 c) recovers the potential vorticity 
characteristics 

(2.7~-C) 

(2.7d) 

(2.8) 

conservation along the 
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Eastern boundary disturbances are the part of the solution whose characteristics or 
wave rays start from the eastern boundary. (A complete discussion of the solution in 
the entire gyre is presented in Liu 1991, 1993 b). If disturbances are generated along the 
eastern boundary x = 0 by the interface depth h,(f, t )  at time ti and on latitudef,, we 
have the initial conditions 

Here we will only consider the waves forced by eastern boundary upwelling athe + 0 
and in the interior the Ekman pumping is assumed steady. Furthermore, the Ekman 
pumping is chosen to be zonally independent 

xi = 0, hi = he(&, ti). (2.10) 

we = we(f 1. (2.11) 
With these assumptions, (2.7a, b) can be solved immediately as 

t = t,+s, (2.12a) 

dp/pw,(p) or implicitly f = f(L, s). (2.12b) 

Using potential vorticity conservation (2.9) to replace the h-equation ( 2 . 7 ~ )  and noting 
the initial conditions in (2.10), we have the h-solution 

p=s: 
h = 1-[1-heCf,,tOIf/&, (2.124 

wherefis given in (2.12b). Finally, for the x-equation, we use the differential form of 
(2.126) ds = df/fw,df> to replace the characteristic variable s by f in (2.7d). Then, 
noting (2.7), (2.9), (2.10) and (2.12c), (2.5d) can be integrated along the characteristics 
(thus f i , f ,  are constants) to give 

x = [h2-h;(fir ti)]/2f2Ww,Cf>. (2.12d) 

Thefand h are determined in (2.12b, c) .  Equations (2.12~-d) give the solution forced 
by eastern boundary disturbances in the characteristic coordinates. The solution in the 
( t ,  x,j)-coordinates can be obtained by cancelling s, ti,& among (2.12). In the special 
case with he = 0, (2 .124  alone gives the explicit solution h2 = 2 f2we( f )  x, which is the 
shadow zone solution (in a two-layer model) of the classic LPS ventilated thermocline 
(Luyten, Pedlosky & Stommel 1983). The thermocline deepens westward in the 
subtropical gyre. 

3. Planetary wave breaking: no Ekman pumping 
The breaking of free waves (i.e. w, = 0) is investigated in this section. The approach 

developed here will be used in 34 for more complex cases. For simplicity, the eastern 
boundary interface is chosen to be flat and to vary temporally, i.e. 

he = h,(t). (3.1) 
After using this as the initial conditions for characteristics hi = h,(t,), the parametric 
solution for a free wave is directly derived from (2.7) with w e  = 0: 

(3.2a) 

h = he(ti), (3.2b) 

where f = fi has been used. Hereafter (unless otherwise specified) the disturbances are 
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FIGURE 2. The first breaking times and positions for free waves. The horizontal axis is - l/p and the 
vertical axis is He. Hatched regions show the parameters for which no breaking will occur even in an 
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generated at the eastern boundary such that the interfaces move vertically at a constant 
speed p ,  from the initial depth He to the final depth Hel, which satisfy 0 d He, 
He, < 1, i.e. 

A downwelling is represented byp > 0 and He < Hel, while an upwelling is represented 
by p < 0 and He > Hel.  The observed maximum speeds of interfaces varying at annual 
and interannual scales are no more than twice the typical Ekman pumping speed, i.e. 
IpI < 2. In fact, a typical dimensional Ekman pumping speed is w,* - 0.5 x m s-l - 
15 m yearp1. Observations show that the maximum amplitude of interface variation is 
below 15 m for annual variation and below 90 m for interannual variation (say with 
period longer than 6 years) (e.g. Tabara, Thomas & Ramsden 1986). The corresponding 
dimensional speed is thenp* - 15 m/0.5 year - 90 m/0.5 x (6 years) - 2w:. Since the 
non-dimensional p = p*/wt (see (2.5) for the scaling of time), annual and interannual 
variability has the non-dimensional speed range of about IpI < 2 N O(1). 

3 .1 .  The approach 
From the eastern boundary, a perturbation wave is radiated into the interior. This 
wave may break because of nonlinear steepening C - h( 1 - h).  We shall derive the time 
and position of first breaking. In order to generalize the approach for later cases, the 
parametric solution (3.2) is put in a general form 

x = x( t , f ,  ti),  
h = h(t,f, t i ) .  

0 < ti d T, (3.4a) 
(3.4b) 

Physically, (3.4) says that at a time t and a latitudef, the disturbance excited along the 
eastern boundary at a previous time ti reaches the zonal position x( t , f , t i ) .  The 
disturbed interface now is h(t,f, ti). On a fixed latitudef, a breaking time t ,  occurs when 
the zonal profile is vertical, i.e. dhxI f , t b  = 0. In (3.4), this is equivalent to 

Breaking times are then obtained from ( 3 . 4 ~ )  and (3 .5)  as 

attx = 0. (3 * 5 )  

t ,  = t b ( f f , f )  with t b  2 ti .  ( 3 4  
Hence, along the latitudef, the interface becomes vertical at time t ,  on the wave front 
that leaves the eastern boundary at t = t i .  The first breaking time to on the latitudef 
is the minimum of the family of breaking times in (3.6), i.e. 

the first breaking time: to = min{tb}tdELo, (3.7a) 

The first breaking position x ,  and depth h, are then obtained, by substituting (3.7a) 
into (3.4a, b), as 

xo = x(t,,f, ti,), h, = 4 t o , f ,  tie), (3.7b) 

where ti,, is the ti at which t, reaches its minimum as in (3.7a). Mathematically, the 
above method is equivalent to deriving the envelope of the family of characteristics in 
( 3 . 4 ~ )  as in classical methods. 

unbounded ocean. The to > 1 and xo < - 1 contours are not drawn, where the breaking is unlikely 
to take place within a basin of a realistic width. (a) The first breaking time: the observed maximum 
annual and interannual forcing speeds are marked on the top, and the black squares mark the 
parameters used later in figure 3. (b) The first breaking position at f = 0.6 (about 30'). 
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3.2. Free wave breaking 
Substituting the free wave solution (3 .2)  and the eastern boundary perturbation (3.3) 
into (3.5) yields the breaking time 

Differentiating (3 .8)  gives 

atti t, = 2[1+ he(i - he)/(i - 2he)21 > 0. (3.9) 

This means that a disturbance which is excited later will break later. Hence the first 
breaking time occurs at the earliest disturbance wave front with ti = 0. With the aid of 
(3.3) and (3.8),  the first breaking time takes the form 

(3.10) 

The corresponding breaking distance xo is obtained by substituting (3.10) into (3 .2a) ,  
and by using ti = 0 in (3.3),  

(3.11) 

It is interesting to see that the first breaking time and position are independent of the 
disturbance amplitude He,-He (there is no He, dependence in (3.10) and (3.11)). 
Hence, the occurrence of breaking is determined only by the speed and depth of the 
perturbation along the eastern boundary. For eastern boundary conditions more 
general than (3.3),  calculations for some other examples also show that the first 
breaking time and position are mainly determined by the interface depth and 
maximum vertical speed of the perturbation. 

To study the breaking in more detail, we plot the to and x, in the speed, depth 
parameter plane in figure 2 .  Figure 2(a) displays to, which is independent off as seen 
in (3.10), as a function of -l/p and He. The speed ranges for the observed annual 
and interannual variation (Jpl d 2 )  are also marked on the top. A shallowing has 
- l / p  > 0 on the right half-plane and a deepening has - l / p  < 0 on the left half. The 
non-breaking parameter region is hatched. It is seen from figure 2(a) that at the fast 
speed, IpI = 2,  breaking events occur within about one advective time to d O(1) for 
interfaces at most depths. Figure 2 ( b )  illustrates the corresponding x, at latitude 
f= 0.6. It indicates that most of the breaking occurs within the basin Ix,I d O(1). For 
a slower speed p ,  the He range for breaking gets smaller and breaking tends to be 
trapped on interfaces near the surface and bottom. If the speed is very slow, i.e. 
p + O ,  we have x,-t--co. Thus, breaking will not take place within a finite basin 
although in principle it may occur in an ocean unbounded to the west. 

As we have seen in figure 2, breaking occurs rapidly for an interface near the surface 
or bottom, but breaking occurs very late for an interface near mid-depth. This can be 
explained as follows. Under a perturbation ah, the local Rossby wave speed is 
expanded around the mean local depth h, as 

C(h) = C(h,) +aho C(h,) 6h. 

The first term is the local linear Rossby wave speed while the second term represents 
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FIGURE 3. A schematic figure of a zonal profile for a downwelling eastern boundary displacement and 
its associated wave fronts. The solid lines are the zonal profile and the dashed lines represent the 
continuation of the two shadow zone profiles. (a) Free wave zonal profile atf=f,,,, q = 0, (b) the 
two-dimensional structure of the breaking front confined by the initial and last wave fronts. The black 
arrows indicate the thermal wind jet, i.e. oT = 01-c2. (c) Zonal profile with Ekman pumping at 
f=f , , , ,  < 0. The maximum amplitudes of the breaking fronts are also shown schematically. 

the effect of nonlinear steepening. Thus, the intensity of the nonlinear steepening can 
be measured by 

For an interface near the surface (h,+O) or bottom (h, l), A +  co, implying a strong 
nonlinear steepening. On the other hand, for an interface near the middle depth 
(h,  + O S ) ,  A + 0, suggesting a very weak nonlinear steepening. 

In addition, to compare with later cases with Ekman pumping, several features are 
noteworthy in figure 2. First, for breaking to occur, the result of a shallowing, 
( p  < 0) at the eastern boundary interface depth He is equivalent to a corresponding 
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deepening ( - p  > 0) at the depth 1 -He  (as reflected about the mid-depth He = 0.5). In 
particular, a downwelling causes breaking only when He < 0.5 while an upwelling 
causes breaking only for He > 0.5. Second, both to and xo vary monotonically with 
either He or p. Thus, for a faster speed p ,  or an interface closer to the surface (when 
p < 0) or the bottom (when p > 0) of the model ocean, the breaking occurs earlier and 
closer to the eastern boundary. For the special case He = 0 (when p < 0) or He = 1 
(whenp > 0), breaking occurs immediately at the eastern boundary, while for He = 0.5 
no breaking will occur at all. 

Lastly, it is helpful to introduce a way of judging, directly from figure 2(a), if the first 
breaking time is at the initial front ti = 0. Take the downwelling breaking as an 
example. In figure 2(a), at a fixed downwelling speed p > 0, to increases with He. This 
implies that to must occur on the initial ti = 0 front. The reasoning is as follows. 
Examining the breaking times in (3.8), one sees that the first term on the right-hand 
side (i.e. ti) increases with t,. The second term he(t ,)[l  -h,(t,)]/p[l -2h,(ti)] has the 
same form as the to in (3.10) except that He is replaced by he. Hence, an increase of to 
with He in figure 2(a) means an increase of the second term with (he and then) ti  (note 
atthe = p  > 0). As a result, t, in (3.8) increases with ti, which is consistent with the 
earlier analytical calculation (3.9), att, t, > 0. Accordingly, the first breaking time is on 
the earliest wave front ti = 0. It should be pointed out that for a general eastern 
boundary perturbation h,(t), the breaking time may not be the earliest disturbance time 
(Liu 1991, p. 175). 

3.3.  Structures and amplitudes of breaking fronts 
We start by examining the evolution of zonal profiles. A schematic figure of a zonal 
profile due to a deepening p > 0 at a time t is shown in figure 3(a). There are three 
regimes in a typical zonal profile. The western part is the old (before-perturbation) 
shadow zone (in the absence of Ekman pumping, the whole gyre is filled with a shadow 
zone in which the thermocline is flat!) which has not been affected by an eastern 
boundary disturbance. Behind the old shadow zone is the disturbed regime forced by 
lowering the interface along the eastern boundary. Before the perturbation stops 
( t  < T) ,  only these two parts exist. After the perturbation stops (t > T), there will be 
a third part that is the new (after perturbation) shadow zone established near the 
eastern boundary. The initial (ti = 0) and final (ti = T) disturbance wave fronts are 
also marked on figure 3 (a). Before breaking, an earlier wave front is always west of a 
later wave front. At the first breaking time, a later wave front catches up with an earlier 
one. The interface becomes vertical at the first breaking position xo (this case is not 
shown in figure 3a). Figure 4 plots some examples of the evolution of zonal profiles at 
f = 0.6 (about 30") calculated from (3.2a, b)  and (3.3). In all figures, the eastern 
boundary interface varies with an amplitude 6he = 0.2 (about 120 m).? 

Figure 4 (a-e) illustrates the evolution for the fastest possible annual and interannual 
speed IpI = 2 (twice the speed of the realistic Ekman pumping speed). The values of to 
and xo are found from figure 2(a, b) (black squares). The solid lines are the t = 1 zonal 
profiles while the dashed lines indicate the disturbance profiles at earlier times. Figure 
4(a)  depicts a downwelling case with a very shallow interface He = 0.1. One sees that 
a strong overturning has appeared on the first disturbance profile at t = 0.2. In fact, the 
wave has already broken long before t = 0.2, at t = 0.06. After the first breaking time, 
the solution in (3.2) is no longer valid because of the gravitational instability. Smaller- 

7 This is too large for observations. It is chosen only for clarity of the figures. In any case, for (3.3), 
this large amplitude does not change the first breaking times and positions because (3.10) indicates 
that to (and x,) depends only on the initial depth He but independent of Hel. 
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FIGURE 4. Zonal profile evolution for free waves. The eastern boundary interface moves at a constant 
speed p and the amplitude JH,, - H J  = 0.2. (a) p = 2, He = 0.1. (b) p = -2, He = 0.9. (c) p = 2, 
He = 0.3. (d )  p = -2 ,  H,  = 0.7. (e) p = -2, He = 0.5. cf) p = 1, He = 0.1. The profiles are all at 
t = 0.2, 0.4, 0.6,0.8 and I. The latitude is a t f =  0.6 (about 30"). (a, b) to = 0.06, xo = -0.02; (c, d )  
to = 0.3, xo = -0.18; (e) no breaking; (J) to = 0.13, xo = -0.04. 

scale process such as friction or relative vorticity will enter. (The fast breaking for 
shallow interfaces near the eastern boundary has been pointed out by Anderson & 
Killworth 1979.) Figure 4(b)  shows the upwelling counterpart of figure 4(a). The 
profile is a mirror imagine of figure 4(a)  with respect to H = 0.5. The to and xo are the 
same as in figure 4(a). 

If the downwelling disturbance in figure 4(a)  starts at a greater depth He = 0.3, 
figure 4(c)  indicates that the overturning has not yet appeared on the t = 0.2 profile. 



56 Z .  Liu 

In fact, both to and x, are delayed by a factor of more than five. Relative to the 
shallower case, figure 4(a), the breaking now takes place far away from the eastern 
boundary. Figure 4(d )  is the upwelling breaking counterpart to figure 4(c) which has 
the same to and x,,. Figure 4(e) illustrates a shallowing perturbation forced by the same 
speed as that in figure 4(b, d)  but for H,  = 0.5. One sees that breaking will not occur. 
The last example is figure 4cf) where the deepening speed in figure 4(a) is reduced by 
a half to p = 1. Equation (3.8) shows that the first breaking time will be twice that in 
figure 4(a). 

The reason for downwelling breaking on H < 0.5 and upwelling on H > 0.5 is 
simple. Descending he causes the disturbance profile to shallow westward. If h < 0.5, 
the local Rossby wave speed C(h) is slower on the western side because C(h) - h( 1 - h) 
reaches its maximum at h = 0.5. Therefore, a later disturbance on the eastern side will 
travel faster to catch up with a previous disturbance, causing a downwelling breaking. 
The opposite occurs for ascending he. 

The flow field for a downwelling breaking front is the opposite to that for an 
upwelling breaking front. A downwelling breaking must produce a northward thermal 
wind jet along the breaking front, as drawn schematically in figure 3(a), while an 
upwelling breaking produces a southward thermal wind jet. 

The two-dimensional structure of the breaking front is simply the linear P-dispersion 
shape x - l/fz. This is because the first breaking time (3.10) is independent of latitude, 
so the onlyf-dependency for the breaking position (3.1 1) is the 1 / f z  factor. A schematic 
figure of the two-dimensional (before breaking) disturbance structure (bounded by the 
initial and final disturbance fronts at ti = 0 and T )  is drawn in figure 3 (b). Later, when 
the breaking occurs, the breaking front will be sandwiched by the initial and final 
disturbance fronts. 

Although the amplitude of the breaking front is beyond the scope of our model, 
some preliminary results can still be obtained. We see that the disturbance is vertically 
bounded by the interfaces of the old and the new shadow zones: 

(3.12) 

Therefore, we can estimate the upper bound on the intensity of the breaking front as 

(3.13) 

This shows that the intensity of a breaking front is determined by the amplitude of the 
perturbation (although we have seen in (3.10) and (3.1 1) that the occurrence time and 
position of breaking are independent of the amplitude).t Furthermore, in the absence 
of an Ekman pumping, (3.11) states that the shadow zone thermocline is flat. Thus, 
(3.13) suggests that the intensity of the breaking front is the same everywhere on the 
front. 

hold shadow zone = H c ,  hnew shadow zone = H c l .  

Front intensity - b o l d  shadow zOne-'new shadow zone1 = 1 H e l  - 

4. Planetary wave breaking: with Ekman pumping 
In the presence of Ekman pumping, there will be both a two-dimensional barotropic 

flow and an external forcing. No general approach or conclusions about the wave 
breaking in the presence of a two-dimensional flow are available. Nevertheless, the 
analytical solutions in (2.12) make it possible to examine the breaking condition. 

t As one reviewer pointed out, eventually, when relative vorticity becomes important, it is 
conceivable that up to a certain amplitude, the size of the front may also be independent of the forcing 
amplitude. As in many nonlinear waves, there may be a limit which is intrinsic to the system and 
independent of the forcing. 
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4.1. Forced wave breaking 
To understand the basic effect of Ekman pumping on breaking, we adopt the simplest 
Ekman pumping - a spatially uniform one : 

w e ( f )  = W,. (4.1 a) 

Then, thef-solution in (2.12b) can be solved asf=fi  eweS = , f :  This can be reversed to 
represent the initial latitude as 

f ' i ( f ,  s) =fepWes. (4.1 b)  

After substituting (4.1 a, b )  into (2.12), the solutions with t, as a parameter are obtained 
as 

(4.2 c) 

h = 1 - [ 1 - he(t,)] ewe(t-ti) = h( t , f ,  t i ) .  (4.2d) 

Similar to the free wave case, taking the eastern boundary perturbation (3.3), the 
breaking time is determined, by setting at ix  = 0, as 

(4.3 a) 
1 

tb = +-In [J(he, W,/p)l, w, 

where (4.3 c) 

A physically realistic breaking occurs after the disturbance is generated or to- t, 2 0. 
Thus, we require that 0 < J < 1.  J is readily solved from (4.3 c) as 

(4.3d) 

The sign is chosen such that t ,  gives the minimum and positive tb - t, if available. The 
free wave limit (3.8) can be recovered from (4.3b) in the limit W,/p+O. 

It will be shown soon that the first breaking time occurs at the initial wave front 
ti  = 0. Therefore, from (4.3b) and (3.3) the first breaking time satisfies 

The corresponding position is obtained by substituting (4.4) into ( 4 . 2 ~ )  to give 

{[ 1 - ( 1  -He)  ewe"] - H i )  
xo = 

2 f 2 w ,  
(4.5) 

As in the free wave case of (3.10) and (3.1 I), the first breaking time and position are 
independent of the amplitude of the perturbation Hel - He. Thus, the occurrence of 
breaking is determined only by the vertical speed of the perturbtion and the interface 
depth at which the disturbance occurs. 

With we = - 1 ,  to and x, are plotted in figure 5,  which is arranged similarly to figure 
3 FLM 253 
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FIGURE 5. The first breaking times and positions with uniform Ekman pumping w,cf> = = - 1. 
The parameters in each figure correspond those in figure 2.  (a) to. (b)  x,, at f = 0.6 (about 30"). In 
comparison with the free wave case in figure 2 ,  the downwelling breaking domain is severely reduced 
while the upwelling breaking domain is greatly enhanced (see the text for a fuller discussion). 
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2. to is independent off and is displayed in figure 5(a). One sees that to increases 
monotonically with He for deepening and decreases monotonically with He for 
shallowing. Using an argument similar to that for free waves (at the end of $3.2),  we 
know that the first breaking time must occur on the initial wave front t, = 0. 

The most striking difference between figure 5 (a) and the free wave case of figure 2 (a) 
is that to is not at all symmetrical with respect to the centrepoint (- l / p ,  He) = (0,0.5), 
particularly for a perturbation speed comparable with or slower than the Ekman 
pumping speed (p < 0(1)), which is just the speed of interest for annual and 
interannual variations. In comparison with the free wave in figure 2 (a), the upwelling 
breaking time is shortened and its parameter domain is substantially enlarged. On the 
contrary, the downwelling breaking time is delayed and its domain is severely reduced. 
Hence, imposing Ekman pumping will enhance upwelling breaking but suppress 
downwelling breaking. 

In more detail, the upwelling breaking now occurs for interfaces from the top to the 
bottom of the model ocean. At a fixed ascending speed p ,  the first breaking time 
increases monotonically from 0 to 00, as He varies from 0 to 1 (as opposed to varying 
from 0 to 0.5 as in the free wave case.) In particular, near or slightly above mid-depth 
He 5 0.5, if a shallowing is faster than or comparable with the Ekman pumping 
( p  < O(1)), an upwelling breaking occurs within an advective time (to < O(1)). This 
is in sharp contrast to the free wave case where no upwelling breaking occurs at all if 
He < 0.5 (see figure 2a near He = 0.5 for shallowing). The implication is that for 
interfaces near and above the mid-depth, an upwelling breaking is qualitatively 
changed from non-breaking to breaking. 

In contrast to the upwelling case, for a downwelling breaking, fast downwelling 
(p % 1) is similar to the free wave case. However, a qualitative difference from the free 
wave appears for descending speed comparable or slower than the Ekman pumping. 
In the parametric plane, there is a (internal) marginal curve given by the dotted line (T, 
see figure 5) on the edge of downwelling breaking domain. This curve is 
W , / p  = -(1- 2He)2/(1 -He) ,  which is derived by substituting t, = 0 and (3 .3)  into 
( 4 . 3 4  and then setting the square root in ( 4 . 3 4  to zero. As far as the J-value is 
concerned, T, divides the complex conjugates of J on the left from the real J on the 
right. On T,, the breaking time is finite. In fact, at each depth, T, gives a cutoff (or 
slowest descending) speed 

p,(H,) = - w,( 1 - He)/(l - 2He)2 > 0. (4.6) 

For a descending speed slower than pc, downwelling breaking will not occur. The 
minimum speed pe  in (4.6) is 

implying no downwelling breaking at any depth if the downwelling speed is slower than 
the surface Ekman pumping ( p  < -we). As He deepens from 0 to 0.5, r, varies from 
W,/p = - 1 to T / p  = 0 and the associated cutoff speed (4.6) increases from -we to co. 
Thus, away from the surface the cutoff speed increases and breaking becomes less likely 
to take place. 

Physically, it is hard to understand exactly how and why the breaking conditions are 
altered, partly because the effect of the mean flow is coupled with that of the external 
Ekman pumping. Nevertheless, a rudimentary explanation is offered here. Relative to 
a water particle forced downward (by the surface Ekman pumping) with a speed 
w < 0, an upwelling he at an ascending speed p < 0 has a stronger ascending speed 
p + w < p < 0. In other words, relative to the water particle, the upwelling speed is 

min{p,} = -w e ,  

3-2 
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enhanced, which in turn results in a stronger upwelling breaking tendency and an 
earlier breaking time. However, with respect to this downward particle, a descending 
he at the speed p > 0 has a relatively weaker descending speed p+ w < p > 0. In 
particular, when the descending is slower than the downward speed of the particle 
0 < p + w < p ,  he moves upward relative to that particle. As a result, downwelling 
breaking will not occur. This offers an explanation for why downwelling breaking 
abruptly disappears when p < -we. 

In a basin with a finite zonal extent, breaking occurs only when the x, is within the 
basin. The x, derived from (4.5) is plotted in figure 5(b) at latitudes f = 0.6 (about 30"). 
Similarly, to to, here x,, differs substantially from the free wave case. In the figure, the 
x,, are much closer to the eastern boundary than the free wave case in figure 4(b). 

In summary, under a mean downward Ekman pumping as in a subtropical gyre, 
downwelling breaking is severely suppressed and the breaking time is delayed. For 
descending speeds slower than the Ekman pumping, there will be no downwelling 
breaking. In addition, downwelling breaking tends to be trapped on interfaces near the 
surface. In contrast, upwelling breaking is greatly enhanced by the mean downward 
Ekman pumping and the breaking times are shortened. Shallowing breaking even 
appears on interfaces within the upper half of the ocean. 

4.2. Structures and amplitudes of breaking fronts 
In the presence of Ekman pumping, (2.12d) alone gives explicitly the shadow zone 
solution (if he = He = constant) 

h = (2f  'w,(f) x + Hz)k. (4.7) 
Now, the interface deepens westward. Schematically, a zonal profile after an eastern 
boundary disturbance is as in figure 3 (c). This differs from the free wave case in figure 
3(a) in that now the disturbance is advected downward as it advances westward. 

Figure 6 shows some examples of the evolution of zonal profiles at f = 0.6. The 
parameters in figure 6 (a-f) correspond to those in figure 4 (a-f) respectively except 
now with Ekman pumping we = - 1. For the strong annual and interannual deepening 
on a shallow interface with He = 0.1, comparing figure 6(a)  with the free waye case in 
figure 4(a),  one sees that the first breaking time and position are delayed by a factor 
of about three. Yet the corresponding upwelling breaking in figure 6(b)  has t,, and x,, 
only slightly earlier than the free wave case in figure 4(b). A dramatic change occurs 
if the interface is deeper, say He = 0.3 as in figure 6(c) ,  or the deepening speed is 
reduced, say by a half, as in figure 6 0 ;  now downwelling breaking does not occur 
even in an unbounded ocean while the free wave in figures 4(c)  or 4 ( f )  breaks early 
in the eastern part of the basin. These two cases are located in the parameter plane in 
the non-breaking domain (the hatched region in figure 5a,  c). The upwelling case 
corresponding to figure 6(c)  is shown in figure 6(d) .  The first breaking time and 
position are shortened by about 40 70 compared to the free wave in figure 4(d) .  If the 
interface starts further up within the upper half of the ocean, a significant change 
appears for the upwelling breaking. Although the free wave in figure 4(e)  will not 
break, upwelling breaking will take place in the presence of Ekman pumping as shown 
in figure 6(e). Combining figure 6(e)  with figure 6(c), one can imagine an interesting 
phenomenon. Under a periodic he forcing, the disturbance will create an upwelling 
breaking front on an interface in the upper half of the ocean where otherwise a 
downwelling breaking front will be expected in the absence of Ekman pumping. 

Another difference from the free wave case is that all the disturbances now slide 
down the steady shadow zone thermocline because of the downward Ekman pumping 
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FIGURE 6 .  Zonal profile evolution for waves in the presence of uniform Ekman pumping we = - 1. 
The eastern boundary condition is the same as in figure 4. Parameters in (a-f> correspond to those 
in figure 4(a-f). 

(figure 6). This vertical propagation provides another explanation for the suppressed 
downwelling breaking and enhanced upwelling breaking. Initially, a deepening 
disturbance starting at h - He -= 0.5 will of course create a downwelling breaking 
tendency (Le. a westward shoaling interface) that can only break for h < 0.5. Its profile 
is becoming steeper due to the nonlinear steepening. However, the disturbance also 
propagates downward. The perturbation may penetrate to the deeper half of the ocean 
(h > 0.5) before breaking. After it descends to the lower half of the ocean, the 
perturbation with the downwelling breaking tendency (shoaling towards the west) will 
never break. A similar argument applies to a disturbance forced by a shallowing. 
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the old and the new shadow zones are (see (4.7)) 
The structure of the breaking front can also be estimated according to (3.12). Now, 

As a result, we have the upper bound for the amplitude of a breaking front occurring 
at x = x o , f = f o  as 

Ah lhold shadow zone - hnew shadow zone] 

It is seen that this upper bound is determined by two factors: the amplitude of the 
initial displacement He, -He  and the distance from the eastern boundary xo. The upper 
bound increases with the initial amplitude and decreases westward monotonically. The 
zonal decay is related to the strength of the Ekman pumping (w,(f)). The stronger the 
Ekman pumping is, the faster the decay will be. In the absence of Ekman pumping, 
there is no zonal decay, as has been seen in the free wave case (figure 4)t. The upper 
bound in (4.8) only gives a local upper bound and prohibits any direct estimate of the 
amplitude of a breaking front. Nevertheless, it still seems reasonable to speculate that 
the amplitude of breaking fronts will increase with initial amplitude and decrease away 
from the eastern boundary. This leads to two important deductions. First, breaking 
fronts occurring far from the eastern boundary are usually weak. Secondly, although 
both an interannual variation and an annual variation with the same maximum speed 
have comparable first breaking times and positions (see the discussion following (4.5)), 
the interannual variation will create a stronger breaking front than the annual 
variation because of the longer time, and therefore a larger amplitude of the 
interannual variation. In other words, the occurrence of the breaking (the breaking 
time and position) is mainly determined by the maximum vertical speed of the 
disturbance, while the intensity of the breaking front mainly depends on the amplitude 
of the disturbance. 

Finally, we show that in the presence of mean flow, the breaking positions are 
changed qualitatively. Re-examining the free wave in figure 2 or (3.2), one sees that an 
infinite breaking time must occur at a position infinitely west of the eastern boundary 
(and thus out of the basin). Therefore, the only free waves that break, are those with 
to < O(1) (so that x, < O(1)). But now in figure 5 or (4.5), breaking positions are finite 
even for breaking times approaching infinity (on the shallowing half-plane near 
He --f 0 in figure 5a, b). 

These finite breaking positions are caused by the two-dimensional barotropic flow 
field, which tends to carry wave energy southward while they propagate westward. In 
fact, in the thermocline it is this mean flow field that causes the different zones (pool 
zone, ventilated zone and shadow zone). Waves forced along the eastern boundary can 
only propagate in the shadow zone which is bounded to the west by the shadow zone 
boundary (which is then connected to a ventilated zone or pool zone). Therefore, no 
matter how long it takes, breaking will occur within the shadow zone boundary. 
Moreover, since in (4.4) to is independent of f ,  (4.5) says that a breaking position 
exhibits a linear P-dispersion shape as is the case for the free wave. Therefore, breaking 
fronts occur closer to the eastern boundary in the north than in the south. Noting the 

7 This upper bound actually applies to non-breaking waves too. Therefore, a disturbance tends to 
decrease in its amplitude as it propagates westward and downward. This has been explained in Liu 
(1993~). The physical mechanism for this decay is a divergent group velocity field. 
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westward decay of breaking front intensity discussed in (4.8), we come to another 
important conclusion : breaking fronts, if any, are usually stronger towards the north. 

5. Summary and discussion 
In this analysis it is found that planetary wave breaking is affected significantly by 

Ekman pumping and its associated mean flow. In the presence of Ekman pumping, 
breaking in a downwelling disturbance is suppressed and the breaking time is delayed; 
breaking in an upwelling disturbance is enhanced and its time is shortened. The 
breaking of annual and interannual disturbances will be significantly altered. In 
particularly, downwelling breaking will not occur except for interfaces near the surface. 

The breaking times and positions are mainly determined by the maximum vertical 
perturbation speed while the intensity of the breaking front mainly depends on the 
amplitude of the perturbation. The intensity of a breaking front increases with the 
amplitude of the forcing, but decreases with the distance from the eastern boundary. 
The positions of breaking fronts are significantly closer to the eastern boundary with 
two-dimensional mean flow in the northern part. On the other hand, the orientation 
of a breaking front in the northeast-southwest direction. (This is not valid near the 
southern boundary of a subtropic gyre because a uniform Ekman pumping is used in 
54. See Liu 1 9 9 3 ~ ) .  Thus, the intensity of a breaking front tends to be stronger towards 
the north. 

In the presence of spatially varying Ekman pumping, we can similarly study the 
breaking of disturbances generated at the eastern boundary. A detailed discussion is 
presented in Liu (1991), where Ekman pumping with both linear and parabolic 
profiles in latitude are discussed. It is found that the breaking in the northern 
subtropical gyre is similar to the free wave breaking case in $3. In contrast, breaking 
in the southern subtropical gyre is similar to the uniform Ekman pumping case studied 
above. Physically, this difference occurs because of the southward mean flow. In our 
model, the southward mean flow carries the effect of the Ekman pumping southward. 
In the northern subtropical gyre there is very little wave energy coming from the north, 
which in turn results in a breaking similar to a free wave case. But in the southern part 
much wave energy arrives from the north and middle of the basin and therefore the 
influence of Ekman pumping is stronger. In addition, within each half-basin, near the 
middle of the basin, the breaking is more similar to a uniform Ekman pumping case 
compared with the breaking occurring near the gyre boundaries. The physics is simple. 
Near the middle of the gyre, the magnitude of the local Ekman pumping is stronger. 

One should be cautious in applying the theory here to a continuously stratified 
thermocline. This is because we are not sure if an interface in a two-layer model at 
certain depth corresponds to an isopycnal in a continuously stratified thermocline at 
the same depth. Nevertheless, it is still interesting to compare the results here with 
observations. The Subtropical Front is trapped near the surface and is accompanied by 
a northward baroclinic jet. The front found during the POLYMODE Local Dynamics 
Experiment (McWilliams et al. 1983; Hua et al. 1986) in the North Atlantic extends 
very deep and is accompanied by a southward baroclinic jet. These are consistent with 
our theory here. A downwelling breaking front, which is accompanied by a northward 
thermal wind jet, is trapped near the surface. An upwelling breaking front, which is 
accompanied by a southward thermal wind jet, can extend very deep. All observed 
fronts have slopes consistent with a northeast-southwest orientation. 

Finally, note that without a statistically steady eastern boundary (or localized wind 
or diabatic) forcing, it is unlikely that the temporal breaking phenomena discussed here 
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are mainly responsible for the observed statistically stationary fronts such as the 
Subtropical Front. However, it is possible that some temporal behaviour and finer 
structures observed within these mean fronts (Niiler & Reynolds 1984) are produced 
by the breaking of (more general) planetary waves which are caused not only by the 
eastern boundary upwelling or downwelling but also by local wind or buoyancy flux. 
The breaking can be caused mainly by the nonlinear steepening of a Rossby wave, 
which propagates along a smooth thermocline, as discussed here. 

It is also possible for breaking to be produced by a second mechanism not 
investigated in this paper. That is the effect on nonlinear Rossby waves of the 
thermocline structure associated with a mean frontal structure (which is formed by 
some other mechanisms). In this case, breaking occurs because the rapid spatial 
variation of the basic thermocline may produce a strong variation of local Rossby wave 
speed within the mean front, which in turn causes breaking of the nonlinear Rossby 
waves. 
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